QUASI-MAXIMUM LIKELIHOOD ESTIMATION FOR A CLASS OF CONTINUOUS-TIME LONG-MEMORY PROCESSES By Henghsiu Tsai and K. S. Chan Academia Sinica and University of Iowa

نویسندگان

  • Henghsiu Tsai
  • K. S. Chan
چکیده

Tsai and Chan (2003) has recently introduced the Continuous-time AutoRegressive Fractionally Integrated Moving-Average (CARFIMA) models useful for studying long-memory data. We consider the estimation of the CARFIMA models with discrete-time data by maximizing the Whittle likelihood. We show that the quasimaximum likelihood estimator is asymptotically normal and efficient. Finite-sample properties of the quasi-maximum likelihood estimator and those of the exact maximum likelihood estimator are compared by simulations. Simulations suggest that for finite samples, the quasi-maximum likelihood estimator of the Hurst parameter is less biased but more variable than the exact maximum likelihood estimator. We illustrate the method with a real application.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Maximum likelihood estimation of linear continuous- time long-memory processes with discrete-time data

We develop a new class of Continuous-time Auto-Regressive Fractionally Integrated Moving-Average (CARFIMA) models which are useful for modelling regularly-spaced and irregularly-spaced discrete-time long-memory data. We derive the autocovariance function of a stationary CARFIMA model, and study maximum likelihood estimation of a regression model with CARFIMA errors, based on discrete-time data ...

متن کامل

Quasi-maximum Likelihood Estimation of Long-memory Limiting Aggregate Processes

We consider the application of the limiting aggregate model derived by Tsai and Chan (2005d) for modeling aggregated long-memory data. The model is characterized by the fractional integration order of the original process and may be useful for (i) modeling discrete-time data with sufficiently long sampling intervals, for example, annual data, and/or (ii) studying the fractional integration orde...

متن کامل

A Note on the Covariance Structure of a Continuous-time Arma Process

We have derived some matrix equations for speedy computation of the conditional covariance kernel of a discrete-time process obtained from irregularly sampling an underlying continuous-time ARMA process. These results are applicable to both stationary and non-stationary ARMA processes. We have also demonstrated that these matrix results can be useful in shedding new insights on the covariance s...

متن کامل

TEMPORAL AGGREGATION OF STATIONARY AND NONSTATIONARY DISCRETE-TIME PROCESSES By Henghsiu Tsai and K. S. Chan

We study the autocorrelation structure and the spectral density function of aggregates from a discrete-time process. The underlying discrete-time process is assumed to be a stationary AutoRegressive Fractionally Integrated Moving-Average (ARFIMA) process, after suitable number of differencing if necessary. We derive closed-form expressions for the limiting autocorrelation function and the norma...

متن کامل

Modified Maximum Likelihood Estimation in First-Order Autoregressive Moving Average Models with some Non-Normal Residuals

When modeling time series data using autoregressive-moving average processes, it is a common practice to presume that the residuals are normally distributed. However, sometimes we encounter non-normal residuals and asymmetry of data marginal distribution. Despite widespread use of pure autoregressive processes for modeling non-normal time series, the autoregressive-moving average models have le...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005